Abstract:Abstract:Objective To explore the value of metagenomic next-generation sequencing (mNGS) in the pathogen identification in children with hematological malignancies complicated with infections. Methods A retrospective analysis was conducted on clinical data and pathogenic test results of 43 children with hematological malignancies who underwent microbial culture and mNGS due to infections in the Third Xiangya Hospital of Central South University between June 2020 and July 2022. Differences in detection rates and characteristics of pathogenic microorganisms detected by mNGS and microbial culture were compared. Results A total of 54 specimens were examined, and the overall detection rate of pathogen by mNGS (80%, 43/54) was significantly higher than that by microbial culture (30%, 16/54) (P<0.001). The most commonly detected infection type by mNGS was viral infection, followed by fungal infection combined viral infection, while that by microbial culture was bacterial infection, followed by fungal infection. The detection rate of fungi by mNGS (33%, 18/54) was higher than that by microbial culture (6%, 3/54) (P<0.001). The detection rate of two or more pathogenic microorganisms by mNGS was higher at 48% compared to microbial culture at 9% (P<0.05). The detection rate of two or more types of pathogenic microorganisms by mNGS was also significantly higher at 33% compared to microbial culture at 2% (P<0.05). The most commonly detected bacteria and fungi by mNGS were Pseudomonas aeruginosa and Candida tropicalis, respectively, in peripheral blood, while Streptococcus pneumoniae and Pneumocystis jirovecii were most commonly detected in bronchoalveolar lavage fluid. Treatment adjustments based on mNGS results were beneficial for 35% (15/43) of the cases. Conclusions mNGS has a higher detection rate than microbial culture and has obvious advantages in diagnosing mixed and fungal infections, making it a useful supplementary diagnostic method to microbial culture.